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Abstract. A general method for deriving Backlund transformations for the Ernst equation 
is presented. It is based on an ansatz of Clairin’s type and the consistency conditions of 
the resulting system of differential equations. It is found that a simple ansatz gives Ehler’s 
transformation, even though the functions appearing in the ansatz belong to a wide class 
of functions. 

The use of Backlund transformations to find new solutions of non-linear partial 
differential equations has been extended recently to a number of such equations, some 
of which are the basic equations of a variety of physical problems (Miura 1976). One 
such equation is the Ernst equation (Emst 1968), which is the fundamental equation 
for vacuum stationary axially symmetric spacetimes, and also occurs in Yang-Mills 
models (Witten 1979, Forgacs e? al 1980) and the non-linear cr model (Sanchez 1982). 
A limited number of such transformations has been found (Kramer et a1 1980, Cosgrove 
1979, 198 1). Recently attempts have been made to obtain Backlund transformations 
for this equation in a unified way (Omote and Wadati 1981, Harrison 1983), which 
were successful. 

In the present paper a systematic method for finding Backlund transformations is 
presented, which is based on Clairin’s approach to these transformations (Lamb 1974, 
Omote and Wadati 1981) and the consistency conditions of the resulting partial 
differential equations (Forsyth 1959), whose number is greater than the number of 
their dependent variables. First the simplest ansatz of Clairin’s type is made, which 
leads to a system of four equations. The consistency conditions of these equations 
add one more equation. The resulting system of the five equations is solved. Sub- 
sequently a more general ansatz is considered, which again leads to a system of four 
equations. One more equation is obtained from the consistency conditions of these 
equations. The five equations reduce to a system of two first-order partial differential 
equations for one dependent variable and the general solution of each of the resulting 
two equations is found. Then the common solution of the two equations is obtained 
in the form of an arbitrary function of certain arguments. For each choice of the 
arbitrary function we obtain a Backlund transformation. A pseudopotential is intro- 
duced in a ‘natural’ way. The equations which the pseudopotential satisfies are found 
and then these equations are solved. Substituting the expression for the pseudopotential 
in the Backlund transformations and solving them we find that the new solution is 
related to the old by an Ehler transformation (Ehler 1957). This result holds for any 
choice of the above-mentioned arbitrary function. Also Ehler’s transformation is found 
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without solving the equations for the pseudopotential and without solving the equations 
which express the Backlund transformations. 

The method described in this work can be used to derive Backlund transformations 
not only for the Ernst equation but also for other equations. 

Let x, y,  z be Cartesian coordinates and let p = ( X ’ + Y ~ ) ’ ’ ~ .  Then if we put 

( = p + i z  l = p - i z  (1) 
the Ernst equation for axially symmetric gravitational fields written in terms of the 
complex Ernst potential E = E ( p ,  z)  = E ( ( , c )  takes in the variables ( and l the form 

1 7 

a,a,E +L (a,E +a,E)+: (dfE)(a,E) = 0. 
4P E + E  

We shall try to find Backlund transformations following Clairin’s method (Lamb 1974, 
Omote and  Wadati 1981). Let E and E‘ be two solutions of (2) and  let us assume that 

a , E ’ =  ya,E a,E‘= &,E (3) 
where y = y (  E, E, E‘, E ‘ ) ,  S = 6( E, I?, E’, 8‘) and a, =ala, ,  CY = 6, l. Then if we define 
V,, T y ,  Vg, 0, by the relations 

V,=dE+yaE’ 

Vs = aE + SaE.  

T, = a z  + yaE< 
0, = a E  + SaE. 

we obtain, since E and E’ are solutions of (2), 

Vyy = 0 y -S=O.  2Y 2YS v,y+--- = 0 
E + E  E ‘ + E  

(4) 

Also if the above equations hold the integrability condition a,a,E’=a,a,E’ of (3 )  is 
satisfied. Therefore we must have 

y = S  (6) 
where y is the common solution of equations 

2Y 2Y2 a E Y  + yaE.y +--- = 0 
E + E  E + E  

a e Y  + yas ty  = 0. 

We shall try to find solutions of (7 )  and (8) of the form 

y = z, ( E + E, E‘+ E ’ )  + izz( E + I?, E ’ + I.?’), 
Then if we put 

( 7 )  

x2 =;(E’+ E ’ )  (10) 

p0 = az,/ax, i , j = l , 2  (11) 

1 - A E + E )  -I 

we obtain from ( 7 )  and (8) in real variables a system of four equations. If we solve 
this system for p,, we find 

z:+z: 1 22, PI1 = -- pl2=--+- 
x2 XI x2 

2 2  
z:+z: z,(z:+z:) ZI zl-z2 

P2l= -- + p22=--- 
Z2Xl z2x2 Z2Xl z2x2 
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The conditions of consistency of a system of simultaneous partial differential 
equations of the first order, if the number of equations is an exact multiple of the 
number of dependent variables involved, is given by Forsyth (1959).  To write these 
conditions let po be defined by ( 1  l ) ,  where i = 1 , 2 , .  . . , m, j = 1 , 2 , .  . . , n, and let the 
number of equations be rm, where of course r s n. Let us take the rm equations of 
the system and solve them with respect to p,,, i = 1, .  . . , m, j = 1 , .  . . , r. The solution 
will be of the form 

~ , j = a ~ i l a x j = f ; j ( z l , . . .  3 ZmrxI,.. . ,xn,~h.r+l, . . . ,pA,n) (13)  

Then it can be shown that for consistency of the system of equations the following 
conditions must be satisfied (Forsyth 1959): 

A = 1, .  . . , m. 

w h e r e i = l ,  . . . ,  m , a = j + l ,  . . . ,  r , j = l ,  . . . ,  r - 1 , a n d  

(15) 
- af j  --111 aha af  >+A af  a f  8% af;a a&) - = o  

ap,, aprT apST apl, apsr apr, 

where i, I=1 ,  . . . ,  m, a = j + l ,  . . . ,  r, p, ~ = r + l ,  ..., n, j = l ,  . . . ,  r - 1 .  
If m = 1 we have one dependent variable, which we call z, and r equations. Let 

p, =az/ax, =J;(z, x , ,  . . . , x,, p,+,, . . . , pn). In this case (15)  are satisfied while (14)  
become 

where 

d a  a 
+ps- dx, ax, az 

-=- 

and 

F,=Pj-J;(zixl,..~~xn,~i+I,...,Pn). 

Generally suppose that we have a set of equations 

F, = 0, F2 = 0,. . . , F, = 0 (18) 

where F , ,  F 2 , .  . . , F, are regular functions of z, x I , .  . . ,x,, p l , .  . . , pn .  Then a 
necessary and sufficient condition for the set of equations to be consistent is that 

[Fa, F , I = O  
for all combinations of a and j (Forsyth 1959). 
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The expressions (12) do not have pf, on their right-hand side. Therefore they satisfy 
the conditions (15). They must also satisfy the conditions (14). More specifically this 
must happen for i = j = 1 ,  a = 2 and for i = 2, j = 1 ,  a = 2. This happens in both 
cases if 

z: + z: = x:/ x:. (20) 

y =  z1+iz2=(x2/xI)[1+cx,x2+i(-2cxIx2-c2x~x~)1’2] (21) 

The only common solution of the system of five equations (12) and (20) is 

where c is an arbitrary real constant, for which -2cxlx2 - c2x:x: > 0. It is obvious that 
the above expression (Omote and Wadati 1981) is the unique y of the form of (9). 

y ,  = + ( E  + E )  y2 = $ ( E  - E )  y3=4(E‘+E’)  y4=i i (E’-E‘)  (22) 

and let us assume that 

To study a more general case let us write 

Y = z l ( Y l , Y 2 , Y 3 , Y 4 ) + i ~ 2 ( Y i , Y 2 , Y 3 , Y 4 ) .  (23) 
Then if we substitute the expression (23) in (7)  and (8), define pij  as in ( 1 1 )  but with 
i = 1,2,  j = 1 , 2 , 3 , 4 ,  and solve the resulting four equations for pk,, k, 1 = 1,2,  we obtain 

2 2  z1 2 1 - 2 2  

Y i  Y3 
p11= -zip13+z2p14--+- 

z2 2.7122 
p21= -z1p23+z2p24--+- 

Y l  Y3 

z1 z;-z;  
P22 = -z1 P24 - z2P23 +---. 

Y i  Y3 

If we write 

Zf = (Y3 /Yl )Wf  

4 y  = W I a Y ,  

411 = - ( - w , q 1 3 + w 2 q l 4 ) - -  w:  

4 1 2  = -- ( W i q 1 4 +  w2ql3)+-  w2(w, - 1) 

the system (24) becomes 

Y3 1 

Yl Yl 
Y3 1 

Y l  Yl 

Y3 1 
Yl  Y l  

421 = - ( - w l q 2 3 +  w 2 q 2 4 ) + -  wIw2 

Y3 1 

Y I Y i  
4 2 2  = -- ( w 1  424’ w 2 q Z 3 )  -- w i  ( w1 - 1 ) *  

The consistency conditions (14) and ( 1 5 )  must be satisfied for f;, = q,,, z ,  = HI,, x, = y f ,  
m = r = 2, n = 4 and a = 2. From (14) we obtain two relations, one for i = j = 1 and 
another for i = 2, j = 1. We find that both relations are satisfied if 

w ; +  w:= 1 .  (28) 
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Also since the expressions q,,, i = 1 ,2  are independent of q 2 3  and q24 and similarly the 
expressions q2! ,  i = 1 ,2  are independent of q , ,  and q14, as we see from (27), we must 
take i = s = 1 in (15). Then we find that these equations are satisfied. Therefore we 
have to find the common solutions of (27) and (28). If we put 

w ,  = U w2 = *( 1 - U*)1’2 (29) 

F,= y l d , ~  + Y ~ u ~ , u  Fy3( 1 - ~ ~ ) ~ ’ ~ d 4 ~  - U’ + 1 = O  

F2 3 y l d 2 ~  f yj( 1 - a’)’’’d3~ + Y , U ~ ~ U  zt (1 - U ) (  1 - u ~ ) ” ~  = 0 

equations (27) reduce to the system of two equations 

(30) 

(31) 

where a,u = au/ay,, i = 1,2,  . . . , 4 .  The above expressions F,  and F2 satisfy the relation 

I F , ,  F21= 0 

as expected, since (30) and (31) are consistent. 
To solve (30) we find first the solution of the system 

d u  -- dYl - -  dY2 dY3 - dY4 
y, 0 y3u Fy3(1-u ) u2-1‘ 2 1‘2- 

Solving this system we find that the general solution of (30) is given by 

(33) 

where GI is an arbitrary function of its arguments. Also we find that the general 
solution of (31) is 

G2( Y, 9 Y, + Y, (E)]’*, e, Y4 7 Y3( E)]’*) 1-U = 0 (35) 

where again G2 is an arbitrary function of its arguments. The common solutions of 
(30) and (31), i.e. the functions which are simultaneously of the form (34) and (35) 
are the following: 

( (’+“)1’2 ,Y4*Y3 ( l + u ) I ’ ? , m )  l-a = o  
1-U G Y 2 + Y l  - 1-U 

where G is an arbitrary function of its arguments, as in the previous cases. For 
example, if 

G = [ Y ~ + Y , ( ~ ) ” ’ ] * + C = O  YlY3 (37) 

we obtain from (23), (25), (29) and the above relation 

(38) 
Y3 

[ - i (Y2+  cylY3) * (Y: -2cylY2Y3 - 2 yly3) 2 2 I /2  1. Y =  
YI(YI - i Y J  

The expression (yl/y3)y is a function not only of y,  and y2 but also of y,. 
If we write 

(39) g = w I  + i w2 = U zt i (  1 - u ~ ) ’ ’ ~  = l / g  
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we obtain 

2 g  -- - -- l + a  g + l  1 
l-a= -(?I 1 - U  (g -1 )2 ‘  

Then the solution G of (36) becomes a function of 

2iYlY41 2iy2y3 D‘=AB*4D=(y,-iy,)(+y3+iy,)+- 
g - 1  g - 1  

and express A, B and D’ in terms of E, E, E’ and E ’ ,  choosing for B and D’ the lower 
sign, (36) becomes 

E + E  -, E’+E‘  , EE,+ E E ’ -  EE’) 
, E  +- = 0. 

g - 1  g - 1  
(43) 

We shall show now that the common solution of (30) and (31) cannot be obtained 
from an  arbitrary function of four independent arguments. To show that we write the 
arbitrary functions from which the solutions of (30) and (31 )  are obtained in the form 

respectively. The first arguments y 2  and y ,  of G’, and G; cannot be replaced by a 
common expression, which is constructed from the four arguments of Gi including y2 
and independently from the four arguments of G;, including y ,  . We can also say that 
if this was possible then (30) and (31) ,  which are different equations, would have the 
same general solution. Of course this is impossible. This proves what we wanted to 
show. 

From (3), (6), (22), (23), (25) and (39) we find that 

Using these relations we obtain 
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From (43) and (46) we have 

[ (E+II? )~ ,G+(E’+  E’)a,G+(EE’-EE’)a,’G] aaG(A, B, D’) = -~ 
1 

( g - 1 )  

which means that at least one of the relations 

( E  + E ) J , G +  ( E ‘ +  E ’ ) ~ , G  + ( E E ‘ -  E E ‘ ) ~ , . G  = o (48) 

(49) 

must be satisfied. 
Dividing (48) by g - 1 we obtain 

( A -  E ) ~ , G + ( B - E ’ ) ~ , G + ( D ’ - E E ’ ) ~ , , G = o .  (50) 
Suppose that this relation holds, which means that the g and therefore the U we get 
from it does satisfy (30) and (31). Since, E, E ’  and EE’ cannot be obtained from the 
arguments A, B and D‘ of (43), this can happen only if G = G ( A )  or G = G (  B )  or 
G = G ( D ’ ) .  Solving these relations for A, B and D’, respectively, we get A = -ic, , B = 
-ic,, D‘ = c 3 ,  from which we obtain 

Since we must have gg = 1 the constants c,, c2 and c3 must be real. However, if g is 
given by any one of the expressions (51) and  E ’  and E ’  satisfy (45) we find that the 
function g obeys (49). Therefore even if (48) is satisfied g must obey (49), i.e. (49) is 
always satisfied. This means that we have found the Backlund transformations (45), 
where the pseudopotential g (Wahlquist and Estabrook 1975) can be obtained as a 
solution of (49). In this formalism the pseudopotential came out from the arbitrary 
function G. 

The general solution of (49) is 

c - i E  
g=zz 

where c is an arbitrary real constant. Substituting this expression in (45) and solving 
the resulting equations we obtain 

E +ic ,  
iczE + c3 

E ’  = 

where c1, c2 and c3 are arbitrary real constants. This is 
1957). 

The expression of (23) for Y includes the Y of ( 9 )  

( 5 3 )  

Ehler’s transformation (Ehler 

as a special case. We expect 
I I  

therefore the E ‘  which is obtained from the y of (21) to be related to the solution E 
we started from by an Ehler transformation. To show that let us write 

(54) 
for which g g  = 1 .  Then the Backlund transformations will be of the form of (45). But 
using these equations we find that the g of (54) satisfies (49). Therefore the E ’  of this 
case is again of the form of (53). 

g = 1 + cx,x2+i(-2cx,x2 - C ~ X : X : ) I ’ ~  
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Another interesting feature of our formalism is the following. The g for which (43) 
and (45) are satisfied obey (49). Therefore modulo an  arbitrary constant to each E 
there corresponds one and  only one g. Equating the three expressions for g of (51) 
we obtain two equations which can be solved for E' and ,??I in terms of E and E. If 
we d o  that we find again the Ehler transformation (53). In this approach we d o  not 
have to solve (49) nor the relation we get if we substitute the solution of (49) in (45). 

Concluding we can say that we have presented a method by which we can derive 
Backlund transformations in a systematic way. By this method we have found for the 
ansatz of (23) the Ehler transformation, for every g derived from (43), i.e. in a case 
in which the functions appearing in the ansatz belong to a wide class of functions. Of 
course, by this method we can derive Backlund transformations not only for the Ernst 
equation but also for other equations. 
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